
Pseudocode for Krotov’s Method

Michael Goerz
(Dated: October 10, 2019)

For reference, Algorithm 1 shows the complete pseu-
docode of an optimization with Krotov’s method, as
implemented in the krotov package (https://github.
com/qucontrol/krotov).

Variables are color coded. Scalars are set in blue, e.g.

ε
(0)
ln . States (Hilbert space states or vectorized density

matrices) are set in purple, e.g. φinitk . They may be
annotated with light gray superscripts to indicate the
iteration-index i of the control under which state was
propagated, and with light gray time arguments. These
annotations serve only to connect the variables to the

equations of motion: φ
(0)
k (tn) and φ

(0)
k (tn−1) are the same

variable φk. Operators acting on states are set in green,
e.g. µlkn. These may be implemented as a sparse matrix
or implicitly as a function that returns the result of ap-
plying the operator to a state. Lastly, storage arrays are
set in red, e.g. Φ0. Each element of a storage array is a
state.

The Python implementation groups several of the al-
gorithm’s input parameters by introducing a list of N
“objectives”. The objectives are indexed by k, and each
objective contains the initial state φinitk , the Hamiltonian
or Liouvillian Hk to be used by the propagator U and for
the operators µlkn, and possibly a “target” to be taken
into account by the function χ. In many applications,
Hk ≡ H is the same in all objectives, and µlkn ≡ µl if H
is linear in the controls in addition.

The CPU resources required for the optimization are
dominated by the time propagation (calls to the function
U in lines 7, 24 37). This is under the assumption that
evaluating U dominates the application of the operator

µlkn to the state φ
(i)
k (tn−1) and the evaluation of the

inner product of two states, lines 31, 34. This condition
is fulfilled for any non-trivial Hilbert space dimension.

Loops over the index k are parallelizable, in particu-
lar in a shared-memory (multi-threaded) parallelization
environment like OpenMP. In a (multi-process) method-
passing environment like MPI, some care must be taken
to minimize communication overhead from passing large
state vectors. For some (but not all) functionals, inter-
process communication can be reduced to only the scalar
values constituting the sum over k in lines 31, 34.

The memory requirements of the algorithm are dom-
inated by the storage arrays Φ0, Φ1, and X. Each of
these must store N(NT +1) full state vectors (a full time
propagation for each of the N objectives). Each state
vector is typically an array of double-precision complex
numbers. For a Hilbert space dimension d, a state vec-
tor thus requires 16d bytes of memory, or 16d2 bytes
for a density matrix. Under certain conditions, the use
of Φ0 and Φ1 can be avoided: both are required only
when the second order update is used (σ(t) 6= 0). When
the first order update is sufficient, Φ1 may overwrite Φ0

so that the two collapse into a single forward-storage
Φ. The states stored in Φ are only used for the inho-
mogeneity ∂gb/∂ 〈φk| in Eq. (3), and no storage Φ of
forward-propagated states at all is required if gb ≡ 0.
Thus, in most examples, only the storage X of the
backward-propagated states remains. In principle, if the
time propagation U is unitary (i.e., invertible), the states
stored in X could be recovered by forward-propagation

of {χ(i−1)
k (t = 0)}, eliminating X at the (considerable)

runtime cost of an additional time propagation.

Optimization Functional and Equations of Motion

J [{|φ(i)k (t)〉}, {ε(i)l (t)}] = JT ({|φ(i)k (T)〉}) +
∑
l

∫ T

0

ga(ε
(i)
l (t)) dt+

∫ T

0

gb({φ(i)k (t)}) dt (1)

∂

∂t

∣∣∣φ(i)k (t)
〉

= − i

h̄
Ĥ(i)

∣∣∣φ(i)k (t)
〉

(2)

∂

∂t

∣∣∣χ(i−1)
k (t)

〉
= − i

h̄
Ĥ† (i−1)

∣∣∣χ(i−1)
k (t)

〉
+

∂gb
∂ 〈φk|

∣∣∣∣
(i−1)

(3)

with
∣∣∣χ(i−1)

k (T)
〉

= − ∂JT
∂ 〈φk(T)|

∣∣∣∣
(i−1)

(4)

https://github.com/qucontrol/krotov
https://github.com/qucontrol/krotov

2

Algorithm 1 Krotov’s Method for Quantum Optimal Control

Input:

1. list of guess control values {ε(0)ln } where ε
(0)
ln is the value of the l’th control field on the n’th interval of the propagation

time grid (t0 = 0, . . . , tNT = T), i.e., ε
(0)
ln ≡ ε

(0)
l (t̃n) with t̃n ≡ tn + ((tn+1 − tn)/2)

2. list of update-shape values {Sln} with each Sln ∈ [0, 1]

3. list of update step size values {λa,l}
4. list of N initial states {φinit

k } at t = t0 = 0

5. propagator function U that in “forward mode” receives a state φk(tn) and a list of control values {εln} and returns
φk(tn+1) by solving the differential equation (2), respectively in “backward mode” (indicated as U†) receives a state
χk(tn) and returns χk(tn−1) by solving the differential equation (3)

6. list of operators µlkn = ∂Hk
∂εln

, where Hk is the right-hand-side of the equation of motion of φk(t), up to a factor of

(−i/h̄), cf. Eq. (2);

7. function χ that receives a list of states {φk(T)} and returns a list of states {χk(T)} according to Eq. (4);

8. optionally, if a second order construction of the pulse update is necessary: function σ(t).

Output: optimized control values {ε(opt)ln }, such that J [{ε(opt)ln }] ≤ J [{ε(0)ln }], with J defined in Eq. (1).

1: procedure KrotovOptimization({ε(0)ln }, {Sln}, {λa,l}, {φ
init
k }, U , {µlkn}, χ, σ)

2: i← 0 . iteration number
3: allocate forward storage array Φ0[1 . . . N, 0 . . . NT]
4: for k ← 1, . . . , N do . initial forward-propagation

5: Φ0[k, 0]← φ
(0)
k (t0)← φinit

k

6: for n← 1, . . . , NT do

7: Φ0[k, n]← φ
(0)
k (tn)← U(φ

(0)
k (tn−1), {ε(0)ln }) . propagate and store

8: end for
9: end for

10: while not converged do . optimization loop
11: i← i+ 1
12: Φ1, {ε(i)ln } ← KrotovIteration(Φ0, {ε(i−1)

ln }, . . .)
13: Φ0 ← Φ1

14: end while
15: ∀l,∀n : ε

(opt)
ln ← ε

(i)
ln . final optimized controls

16: end procedure

17: procedure KrotovIteration(Φ0, {ε(i−1)
ln }, {Sln}, {λa,l}, {φinit

k }, U , {µlkn}, χ, σ)

18: ∀k : φ
(i−1)
k (T)← Φ0[k,NT]

19: {χ(i−1)
k (T)} ← χ({φ(i−1)

k (T)}) . backward boundary condition
20: allocate backward storage array X[1 . . . N, 0 . . . NT].
21: for k ← 1, . . . , N do

22: X[k,NT]← χ
(i−1)
k (T)

23: for n← NT , . . . , 1 do . backward-propagate and store

24: X[k, n− 1]← χ
(i−1)
k (tn−1)← U†(χ

(i−1)
k (tn), {ε(i−1)

ln },Φ0)
25: end for
26: end for
27: allocate forward storage array Φ1[1 . . . N, 0 . . . NT]

28: ∀k : Φ1[k, 0]← φ
(i)
k (t0)← φinit

k

29: for n← 1, . . . , NT do . sequential update loop

30: ∀k : χ
(i−1)
k (tn−1)← X[k, n− 1]

31: ∀l : ∆εln ←
Sl,n−1

λa,l
Im
∑
k

〈
χ
(i−1)
k (tn−1)

∣∣µlkn∣∣φ(i)
k (tn−1)

〉
. first order

32: if σ(t) 6= 0 then . second order

33: ∀k : ∆φ
(i)
k (tn−1)← φ

(i)
k (tn−1)− Φ0[k, n− 1]

34: ∀l : ∆εln ← ∆εln +
Sl,n−1

λa,l
Im
∑
k

1
2
σ(t̃n)

〈
∆φ

(i)
k (tn−1)

∣∣µlkn∣∣φ(i)
k (tn−1)

〉
35: end if
36: ∀l : ε

(i)
ln ← ε

(i−1)
ln + ∆εln . apply update

37: ∀k : Φ1[k, n]← φ
(i)
k (tn)← U(φ

(i)
k (tn−1), {ε(i)ln }) . propagate and store

38: end for
39: if σ(t) 6= 0 then
40: Update internal parameters of σ(t) if necessary
41: end if
42: end procedure

3

Notes:

• The index k numbers the independent states to be propagated, respectively the independent “objectives” (see
text for details), l numbers the independent control fields, and n numbers the intervals on the time grid.

• The optimization loop may be stopped if the optimization functional or the change of functional falls below a
pre-defined threshold, a maximum number of iterations is reached, or any other criterion.

• The braket notation in lines 31 indicates the (Hilbert-Schmidt) inner product of the state χ
(i−1)
k (tn − 1) and

the state resulting from applying µlkn to φ
(i)
k (tn−1). In Hilbert space, this is the standard braket. In Liouville

space, it is tr
(
χk
† µlkn[φk]

)
with density matrices χk, φk and a super-operator µlkn.

• For numerical stability, the states χ
(i−1)
k (T) in line 19 may be normalized. This norm then has to taken into

account in the pulse update, line 31.

• In line 24, the storage array Φ0 is passed to U† only to account for the inhomogeneity due to a possible state-
dependent constraint, ∂gb/∂ 〈φk| in Eq. (3). If gb ≡ 0, the parameter can be omitted.

	Optimization Functional and Equations of Motion

